Pathways & progress to low carbon transport in the UK

Automotive World Conference Shaping a Greener Future: Decarbonising Road Transport in the UK

London 15th October 2009

Greg Archer Managing Director Low Carbon Vehicle Partnership

Low Carbon Vehicle Partnership

Accelerating a sustainable shift to low carbon vehicles and fuels in the UK

Stimulating opportunities for UK businesses

Outline

- The scale of the challenge
- Pathways and progress to low carbon transport
 - Improving vehicle efficiency
 - Electrification
 - Biofuels
 - Hydrogen fuel cells
 - Demand management
- Greening Transport
- Conclusions

EU domestic transport emissions will consume the CO2 budget on current trends – Even ambitious emission reductions may not leave sufficient headroom for other sectors

Adapted from EEA 2009 & TNO 2009

There are no silver bullets to low carbon transport but4 (maybe 5) complementary pathways

- Efficiency improvements
- Biofuels and biomethane
- Electrification
- Demand Management
- □ Hydrogen Fuel Cells?

2004

2006

2008

Vehicles are becoming more efficient but accelerated progress depends upon:

- Reversing unsustainable trends in vehicle size, weight and power
- Maintaining consistently high fuel price
- Industry-wide action regulation
- Increased consumer demand bridging the attitude action gap, through:
 - Improved customer information
 - Increased desirability of low carbon technologies
 - Stronger incentives
 - Greater model availability

Efficient powertrains using advanced low carbon liquid fuels provide an alternative route to ultra-low carbon

Sustainability concerns must be addressed

Significant GHG-emissions can be delivered through targeted use of high blend biofuels and biomethane

low carbon vehicle partnership

There is global momentum towards electrification of transport

EVs address key geopolitical concerns:

- Climate
- Energy security
- Peak oil
- Early consumer interest as sustainable, cool, high technology products
- Substantial public funding of RD&D
- Investment & commitment from global OEMs

But ... early visionary vehicles do not create a mass market

There are substantial technical and commercial barriers making widespread, rapid consumer uptake unlikely

- Battery performance limits range
- Battery cost constrains market
- Battery reliability / lifetime uncertain
- Recharging infrastructure currently unavailable
- Vehicle availability minimal
- Pathway to profit highly uncertain
- Widespread consumer acceptability low
- Safety concerns must be allayed
- Immature supply chain

Preparing the market for renewable fuels or EVs requires:

- Coordinated support throughout the innovation chain
- Tackling market failures & <u>supporting</u> niche applications
- Long-term commitments to promising alternatives
- Adequate incentives to reward low carbon
- Bridging the customer attitude-action gap
- Preparing for the rebound effect and changes to transport fuel tax revenues

"It has very low emissions - it's impossible to find a garage selling the fuel."

©Cartoonstock.com

Technology can only be part of the solution - demand management and mode shift are also needed to delink transport demand & growth; & manage rebound effects

LowC^{VP} low carbon vehicle partnership

- Smarter driving improved driver behaviour
- Reduced vehicle use
- Better freight distribution
- Modal shift
- Land-use planning
- Tele-working

EU trends in freight and passenger transport compared to GDP

Greening Transport

- Established carbon budgets in transport for the first time
- x Few new announcement or policy interventions
- x Less ambitious than Climate Change Committee
- x Questionable assumptions underpinning key projections

Low Carbon Transport: A Greener Future

A Carbon Reduction Strategy for Transport July 2009

Department for Transport

Key message - there are no silver bullets

- We must wean ourselves off our petroleum dependency
- In the next 10-years deploying existing technology to improve vehicle efficiency is the priority, accelerated by:
 - Reversing unsustainable vehicle characteristics trends; consistently high fuel prices; legislation; and, increased consumer demand
- Beyond 2020 renewable fuels will play an increasing important role
- Barriers to electrification of transport are unlikely to be resolved quickly; share of electric and plug-in hybrid vehicles will become important 2020+
- Biofuels will make-up an increasing proportion of liquid fuels-
 - Ultimately may be used with PHEVs and HGVs
- □ Hydrogen fuel cell vehicles may ultimately compete
 - Unlikely to have significant market share before 2030
- Technology is only part of the solution demand management and building public transport infrastructure to encourage modal shift is crucial
- Strategy is a good start but further action is needed

Any Questions?

020 3178 7860 The Low Carbon Vehicle Partnership

secretariat@lowcvp.org.uk

www.lowcvp.org.uk

EVs deliver CO2 benefits over ICEs with minimal grid impacts

WTW GHG emissions

kg CO2-equivalent

- EV share of national electricity production
 - 2020 0.1 2%
 - -20301-8%
- Smart metering and differential pricing can discourage peak demands
- Could create night-time base load for renewables
 - Flattening of daily demand profile will create efficiencies for generators
- Some local grid reinforcement may be needed in peak uptake locations

Cenex / Arup 2008

New cars are becoming more efficient – but the rate of progress must be accelerated to achieve targets

EU & UK new car CO2 emissions

low carbon vehicle partnership

Based upon T&E and SMMT data

There is a wide range of performance between manufacturers

Comparison of manufacturer CO2 emissions

low carbon vehicle partnership

Based upon T&E 2009

To 2020 the challenge is to ready the market for renewable fuels – but which option?

	1 st G Bio	2 nd G Bio	H2-IC	H2-FCV	Bio- CH4	EV
Technology readiness						
Cost competitiveness						
Vehicle availability						
Infrastructure deployment						
Driver acceptability						
Sustainability						

The relative scores do not represent LowCVP policy

There are complex interactions between vehicle range & battery depth of discharge, lifetime & cost

- Li-ion currently c\$2000/kwh
- Outlook battery price for automotive applications c\$1000/kwh
- Cost must be reduced to c\$400/kwh for EV city cars to be competitive
- PHEV applications more likely outside city applications
- Cell price stable high cost of raw materials
- Technology breakthrough necessary for widespread adoption

Technology will be tailored to the application: EV for city use, PHEV or parallel hybrid for medium length journeys; IC for long journeys

High fuel prices stimulate lower carbon and reduced demand for transport - but not necessarily mode shift

Transport cost comparison

□ High fuel prices <u>short term</u> lead to

- Fewer journeys
- Shorter journeys
- More efficient driving
- Lower speeds
- Mode shift
- High fuel prices <u>long-term</u> lead to
 - Trip destination changes
 - Location changes
 - More efficient vehicles
- High fuel prices reduce technology payback times
- Public transport has become increasingly expensive compared to motoring

Based upon DfT 2008